Our interwoven ancestry

Denisova Cave in Siberia. Photo by Демин Алексей Барнаул
Homo georgicus, an archaic descendant of Homo erectus.

In 2008 a new group of human ancestors – the Denisovans, were defined on the basis of a single finger knuckle (phalanx) bone discovered in Denisova cave in the Altai mountains of Siberia. A molar tooth, found at Denisova cave earlier (in 2000) was determined to be of the same group. Since then extensive work in the region has identified that at the time (about 40,000 years ago), modern humans (ancestors of all people alive today), Neanderthals (to whom we’re also related) and Denisovans shared this environment. Since then, more fossils have been found at the cave and identified as being Denisovans. Their ancestry has also been extended back for many hundreds of thousands of years. More significant than the number of fossil bones, however, is the contribution to our genetic understanding of our ancestry. The DNA sequenced from the Denisovan fossils has been compared to DNA from archaic and modern humans, as well as Neanderthals, allowing us to build up an understanding of the connections between our own ancestors and others in our lineage. The more we understand of this history written in our cells, the more it becomes apparent that we are the result of a complex, interwoven tapestry played out on an enormous framework across the planet.

Neanderthal reconstruction.

About 1.9 million years ago, Homo erectus hominins left Africa and began spreading across the world. Homo erectus, whilst enormously successful and persisting in some areas until quite late in the biological sequence (perhaps as late as 50,000 years ago), also seems to have been the origin of several hominin lineages, including our own. The genetic evidence is crucial as it can reveal patterns and developments over time, without being hampered by gaps in the fossil record. For example, we have not found Denisovan fossils anywhere except at Denisova cave in Siberia, however, we can see their genetic influence in populations in other areas. Most intriguing of all was the discovery at Denisova cave in 2014 (published in August this year) of a long bone fragment of a woman, now known as “Denny”, who had a Neanderthal mother and a Denisovan father.

The current understanding is that about 25 920 generations ago (geneticists work in generations, and assume 30 years per generation, on average) there was a divergence from the Homo erectus population of an archaic species (perhaps the fossils designated Homo heidelbergensis and similar). The ancestors of modern humans were part of this divergence. Perhaps only 300 generations later, Neanderthals and Denisovans formed two lineages out of the remaining archaic population. However, this did not result in 3 perfectly distinct lineages.

Denny’s mother was a Neanderthal from the Altai region, however, genetically she was more closely related to a fossil found in Croatia than to a Neanderthal fossil found in Denisova cave and dated 30,000 years earlier! The Neanderthals found at Altai also contain genetic markers showing links to early modern humans from a later time period than the original divergence. The Denisovan DNA also suggests that there is another (so far unknown) hominin species which had had an earlier separation from the Homo erectus line, which contributed 8% of Denisovan DNA. The Denisovan genome also contains a 17% overlap with the local Altai Neanderthals, suggesting a significant level of exchange of genetic material (interbreeding).

Multicultural Children
Multicultural children

Modern humans who do not have solely African ancestry have between 1 and 4% Neanderthal DNA. Melanesian populations have between 4 and 6% (or possibly even higher) Denisovan DNA. Australian Aboriginals and some groups scattered across South East Asia also have Denisovan genetic markers, suggesting that Denisovan ancestry spread into South East Asia at some point. Small amounts (about 0.2%) of Denisovan DNA are also found in modern Asian and American First Nations people populations. Some modern East Asian populations (including Han Chinese and Japanese) show evidence of two groups of Denisovan DNA – one similar to the South East Asian populations and a second one more similar to the population in the Altai region of Siberia, suggesting two periods of genetic exchange. There is also some suggestion of genetic mixture between Denisovans and people in west Asia.

It would seem that Denisovan DNA may be expressed as dark skin, brown hair and brown eyes, as well as a gene assisting with low oxygen adaptation at high altitudes, found in modern Tibetan populations. This can be compared with the Neanderthals genes which entered the European modern human populations and express as light skin, red hair and freckles. What is abundantly clear is that our ancestry throughout history and prehistory is not so much a tree as a complex, interwoven web. As can be seen in any modern population we all have a wide range of different characteristics that reflect our broad and diverse genetic history. We can also see that all humans, our ancestors and relatives throughout time have always moved widely across the world and formed families together with people in different areas. We are indeed a global species.

 

 

Credit for the Work

In our research for OpenSTEM material we often find (or rediscover) that the “famous” person we all know is not the person who actually first did whatever it was. This applies to inventors, scientists, explorers.

Marco Polo was not the first to go East and hang out with the heirs of Genghis Khan, Magellan did not actually circumnavigate the world (he died on the way, in the Philippines), and so on.

In the field of science this has also happened quite often and it’s quite frustrating (to put it mildly). It’s important that the people who do the work credit the credit – and particularly not other people claiming (or otherwise getting, such as through a Nobel prize) that work as their own. That’s distinctly uncool.

Rosalind Franklin
Rosalind Franklin

Rosalind Franklin was an accomplished British chemist and X-ray crystallographer. It was her work that first showed the double-helix form of DNA. Watson & Crick (with Wilkins) ran with it (without her permission even) and they only mentioned her name in a footnote. As we all know, Watson, Crick and Wilkins received the Nobel prize for “discovering DNA”. False history.

X-ray diffraction image of the double helix structure of the DNA molecule
X-ray diffraction image of the double helix structure of the DNA molecule, taken 1952 by Raymond Gosling, commonly referred to as “Photo 51”, during work by Rosalind Franklin on the structure of DNA
(Raymond Gosling/King’s College London)

While it’s not exclusively women who get a bad deal here, there are a fair number, and the research shows that this is often as a result of some very arrogant other people in their surroundings who grab and run with the work. Sexism and chauvinism have played a big role there.

An article by Katherine Handcock at A Mighty Girl provides a short bio of 15 Women Scientists – many of which you may never have heard of, but all of which did critical work. She writes:

For centuries, women have made important contributions to the sciences, but in many cases, it took far too long for their discoveries to be recognized — if they were acknowledged at all. And too often, books and academic courses that explore the history of science neglect the remarkable, ground breaking women who changed the world. In fact, it’s a rare person, child or adult, who can name more than two or three female scientists from history — and, even in those instances, the same few names are usually mentioned time and again.

Read the full article at A Might Girl: Those Who Dared To Discover: 15 Women Scientists You Should Know